Band Electronic Structure of the High-Temperature *(T,* > 90 K) Superconductor Orthorhombic YBa₂Cu₃O₇. 1. **Partially Filled d-Block Bands of the Equilibrium Structure**

Sir:

K in a multiphase sample of the Y-Ba-Cu-O system has stim-
 $\begin{array}{ccc} \text{Superconducting} \setminus \setminus \longrightarrow & \setminus & \circ \end{array}$ The report' of ambient-pressure superconductivity above 90 ulated numerous studies aimed at determining the identity of the superconducting phase and its structure.²⁻⁶ Unfortunately, the X-ray diffraction studies³⁻⁶ do not provide unambiguous oxygen power of oxygen in the presence of heavy atoms such as Y, Ba, and Cu. Thus, Beno et al.⁷ recently carried out a powder neutron **Example 1.1** K in a multiphase sample of the Y-Ba-Cu-O system has stim-

ulated numerous studies aimed at determining the identity of the

superconducting phase and its structure.²⁻⁶ Unfortunately, the

X-ray diffracti diffraction study, in which all atoms have similar scattering amplitudes, on the superconducting Y-Ba-Cu-0 phase (with a sharp superconducting transition at 92.5 **K** and a narrow transition width of 3 K), which revealed the superconducting phase to be orthorhombic YBa₂Cu₃O_{7-y} ($y \approx 0.19$). This structure differs in the oxygen atom positions and site occupancies from that derived in the single-crystal X-ray study of a tetragonal phase by Hazen et al.⁶ In the present work, we describe the tight-binding band electronic structure of the stoichiometric composition $YBa_2Cu_3O_7$ calculated on the basis of its crystal structure determined by Beno et al.' Details of the tight-binding band calculations are described in our previous report⁸ on orthorhombic La_2CuO_4 and tetragonal $La_{2-x}M_xCuO_4$ ($M = Ba$, Sr).

- (1) Wu, **M.** K.; Ashburn, J. R.; **Torng,** C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. *Phys. Rev. Lett.* **1987,** *58,* 908.
- (2) Hinks, D. G.; Soderholm, L.; Capone, D. W., **11;** Jorgensen, J. D.; Schuller, I. K.; Segre, C. U.; Zhang, K.; Grace, J. D., submitted for publication in *Appl. Phys. Lett.*
- Cava, R. J.; Batlogg, B.; van Dover, R. B.; Murphy, D. M.; Sunshine, **S.;** Siegrist, T.; Remeika, J. P.; Reitman, E. A.; Zahurak, **S.;** Espinosa, G. P. *Phys. Rev. Lett.* **1987,** *58,* 1676.
- Grant, P. M.; Beyers, R. B.; Engler, E. M.; Lim, G.; Parkin, **S.** P.; Ramirez, M. L.; Lee, V. Y.; Nazzal, A.; Vazquez, J. E.; Savoy, R. J. *Phys. Rev. B: Condens. Matter,* in press.
- (5) **Syono,** Y.; Kikuchi, M.; Oh-ishi, K.; Hiraga, K.; Arai, H.; Matsui, Y.; Kobayashi, N.; Sasoka, T.; Moto, *Y.,* unpublished results.
- HaZen, R. M.; Finger, **L.** W.; Angel, R. J.; Prewitt, C. T.; Ross, N. L.; Mao, H. K.; Hadidiacos, C. G.; Hor, P. H.; Meng, R. L.; Chu, C. W. *Phys. Rev. B: Condens. Matter, in press.*
- Beno, M. A,; Soderholm, L.; Capone, D. W., **11;** Hinks, D. G.; Jor**gensen,** J. D.; Schuller, **I.** K.; **Segre,** C. U.; Zhang, K.; Grace, J. D., submitted for publication in *Appl. Phys. Lett.*
- Whangbo, M.-H.; Evain, M.; Beno, M. A,; Williams, J. A. *Znorg. Chem.,* preceding paper in this issue.
- Bednorz, J. G.; Muller, K. **A.** *Z. Phys. B Condens. Matter* **1986,** *64,* (9) 189.
- Bednorz, J. G.; Takashige, M.; Muller, K. A. *Europhys. Lett.* **1987,** *3,* (10) 379.
- Takagi, H.; Uchida, S.; Kitazawa, K.; Tanaka, **S.** *Jpn. J. Appl. Phys.,* (11) *Part 2* **1987,** *26,* L123.
- (12) Uchida, **S.;** Takagi, H.; Kitazawa, K.; Tanaka, **S.** *Jpn. J. Appl. Phys., Part 2* **1987,** *26,* L1.
- Cava, R. J.; van Dover, R. B.; Bartlogg, B.; Rietmann, E. **A.** *Phys. Rev. Lett.* **1987,** *58,* 408.
- Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, **Y.** Q. *Phys. Rev. Lett.* **1987,** *58,* **405.**
- Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, 2. **J.** *Science (Washington, D.C.)* **1987,** *235,* 567.
- (16) Jorgensen, J. D.; Schuttler, H.-B.; Hinks, D. J.; Capone, D. W., **11;** Zhang, K.; Brodsky, M. B.; Scalapino, D. J. *Phys. Rev. Lett.* **1987,** *58,* **1024.**
- Tarascon, **J.** M.; Greene, L. H.; McKinnon, W. R.; Hull, G. W.; Gabalk, T. H. *Science (Washington, D.C.)* **1987,** *235,* 1373.
- Bonne, D. **A.;** Greedan, J. E.; Stager, C. **V.;** Timusk, T., submitted for publication in *Solid State Commun.*
- Zhao, *2.;* Chen, L.; Cui, C.; Huang, Y.; Liu, J.; Chen, G.; Li, **S.;** Guo, S.; He, Y. *Kexue Tongbao (Chin. Ed.),* in press.
- Kishio, K.; Kitazawa, K.; Kanbe, S.; Yasuda, **I.;** Sugii, **N.;** Takagi, H.; Uchida, S.-I.; Fueki, K.; Tanaka, S. *Chem. Lett.,* in press.
- Kanbe, **S.;** Kishio, K.; Kitazawa, K.; Fueki, K.; Takagi, H.; Tanaka, S., (21) submitted for publication in *Chem. Lett.*
- Kishio, K.; Kitazawa, K.; Sugii, N.; Kanbe, S.; Fueki, K.; Takagi, H.; (22) Tanaka, **S.,** submitted for publication in *Chem. Lett.*

Figure 1. Crystal structure of $YBa₂Cu₃O_{7-y}$ ($y \approx 0.19$) determined by neutron diffraction.⁷

Figure 2. Electronic structure of $YBa₂Cu₃O₇$, where, in units of the reciprocal vectors *a*, b*,* and *c*,* the wave vectors **r, X, Y,** and **M** are defined as $\mathbf{\Gamma} = (0, 0, 0), \mathbf{X} = (a^*/2, 0, 0), \mathbf{Y} = (0, b^*/2, 0), \text{ and } \mathbf{M} =$ **(a*/2,** *b*/2, 0).*

The crystal structure of $YBa₂Cu₃O₇$ is shown in Figure 1. The Cul atoms form **Cu03** chains **(1)** along the 6 axis, and the Cu2 atoms form dimpled Cu02 layers **(2)** in the *a6* plane. The Cu2

atoms are out of the 02-03 plane by 0.263 **A** toward the side facing the Ba²⁺ cations. Each Cu2 atom of the CuO₂ layers is capped by the oxygen $(O4)$ of the $CuO₃$ chains, thereby leading to a square-pyramidal coordination for Cu2. Each Y^{3+} cation has a square-prismatic coordination provided by **two** sandwiching $CuO₂$ layers, while each Ba²⁺ cation is located in an oxygen pocket made up of four oxygen atoms of a $CuO₂$ layer and six oxygen atoms of two CuO₃ chains. In turn, the Y^{3+} and Ba²⁺ cations made up of four oxygen atoms of a CuO₂ layer and six oxygen
atoms of two CuO₃ chains. In turn, the Y^{3+} and Ba²⁺ cations
form $(Y^{3+} \cdots Ba^{2+} \cdots Ba^{2+} \cdots)$, chains along the *c* axis. The structural
unit of $Y^{\text{D$ form $(Y^{3+} \cdots Ba^{2+} \cdots Ba^{2+} \cdots)$ chains along the c axis. The structural unit of $YBa_2Cu_3O_7$ essential for high-temperature superconductivity is the two-dimensional (2D) slab $Ba_2Cu_3O_7^{3-}$, i.e., two CuO₂ layers that sandwich one CuO₃ chain and two Ba²⁺ ions per unit cell, which is referred to as a *superconducting* $Ba₂Cu₃O₇³⁻$ slab in Figure 1. Substitution of Y by other lanthanide elements such

as Sm, Eu, Gd, Dy, Ho, and Yb does not greatly affect the high-temperature superconductivity. 23

A unit cell of $YBa₂Cu₃O₇$ contains two CuO₂ layers and one CuO₃ chain. With the coordinate x , y , and z axes taken along the crystallographic *a, b,* and *c* axes, respectively, the CuO, layers are parallel to the *xy* plane while the copper-oxygen planes of the CuO, chains are parallel to the *yz* plane. Therefore, in the CuO₃ *chains*, it is the $z^2 - y^2$ orbital of Cu1 that plays the role which the $x^2 - y^2$ orbital of Cu2 plays in the CuO₂ *layers*. Figure 2a shows the dispersion relations of the top three d-block bands of $YBa₂Cu₃O₇$, where the dashed line refers to the Fermi level. The two nearly degenerate $x^2 - y^2$ bands (hence represented by a thick line) are solely derived from the $CuO₂$ layers, so they are 2D with almost equal dispersion along the *a-* and b-axis directions. The $z^2 - y^2$ band is solely represented by the CuO₃ chains and is dispersive only along the *b*-axis direction. The $z^2 - y^2$ band lies higher in energy than the $x^2 - y^2$ bands, because the $z^2 - y^2$ orbital of Cul is raised in energy due to the short Cul-04 distance (i.e., Cu1-O4 = 1.850 Å vs. Cu2-O4 = 2.303 Å).⁷

With two electrons to fill the three bands of Figure 2a, the two $x^2 - y^2$ bands are each half-filled and the $z^2 - y^2$ band is empty. The bottom of the last band lies 0.11 eV above the Fermi level. The Fermi surfaces of the two $x^2 - y^2$ bands are essentially identical, one of which is shown in Figure 2b. As expected, this Fermi surface is 2D in nature and shows a reasonably good Fermi surface nesting (with the nesting vector $q \approx a^*/2 \pm b^*/2$ as in the case of $La_2CuO_4^8$. Shown in Figure 2c is the density of states (DOS), $n(e)$, calculated for the $x^2 - y^2$ and $z^2 - y^2$ bands. It is clear that this DOS profile is a superposition of the DOS for the ID $z^2 - y^2$ band, which peaks at the top and the bottom of the band, and that for the $2D(x^2 - y^2)$ bands, which peaks in the middle of the band. The Fermi level, e_f , occurs in the middle of the x^2 $-y^2$ bands, and the DOS value at e_f , $n(e_f)$, is calculated to be 8.85 electrons per unit cell/eV. According to Beno et al.,⁷ the site occupancies of 01 and 02 are 0.92 (2) and 0.95 (2), respectively, so the refined stoichiometry of the superconducting Y-Ba-Cu-0 phase is $YBa₂Cu₃O_{6.81}$. Thus the average oxidation number of copper in YBa₂Cu₃O_{6.81} is smaller than that in YBa₂Cu₃O₇ by 0.127. Within the rigid band model, therefore, the Fermi level of nonstoichiometric YBa₂Cu₃O_{6.81} may be estimated by putting 2.381 electrons (instead of 2) into the d-block bands in Figure 2a. This leads to a new Fermi level slightly higher than the one shown in Figure 2a, but still 0.06 eV below the bottom of the *z2* $-y^2$ band, and to a smaller $n(e_f)$ value (i.e., 7.80 electrons per unit cell/eV).

Since the $z^2 - y^2$ band is empty but the $x^2 - y^2$ bands are each half-filled, the oxidation state of copper is higher in the $CuO₃$ chains (Cu³⁺) than in the CuO₂ layers (Cu²⁺). The $x^2 - y^2$ bands do not have any orbital contributions from the $CuO₃$ chains. This implies that, within each superconducting $Ba_2Cu_3O_7^{3-}$ slab, the $Cu2$ atoms of one $CuO₂$ layer do not interact with those of the other $CuO₂$ layer although they are linked by the $Cu2-O4-$ Cul-04-Cu2 bridges. This is rather puzzling in view of the long-range order (i.e., superconductivity) that occurs at a high temperature $(T_c > 90 \text{ K})$. In essence, the partially filled bands of YBa₂Cu₃O₇ (i.e., the $x^2 - y^2$ bands) calculated for its equilibrium structure are identical in nature with the partially filled band of another superconducting phase, $La_{2-x}M_xCuO_4$.⁸ Thus, one may wonder what electronic factors, if any, are responsible for the considerably higher superconducting transition temperature in LBa₂Cu₃O_{7-v} (L = Y, Sm, Eu, Gd, Dy, Ho, Yb; 90 K < T_c $< 100 \text{ K}$)²³ than in La_{2-x}M_xCuO₄ (M = Ba, Sr; 30 K < T_c < 40 K).⁹⁻²² These questions will be probed in detail in our subsequent paper.24

Acknowledgment. Work at North Carolina State University and Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under Grant DE-FG05-86-ER45259 and under Contract W31-109-ENG-38, respectively. We express our appreciation for computing time made available by DOE on the ER-Cray X-MP computer.

(24) Whangbo, M.-H.; Evain, M.; Beno, M. A.; Williams, J. M. *Inorg. Chem.,* following paper in this issue.

Received April 16, 1987

Band Electronic Structure of the High-Temperature *(T,* > 90 K) Superconductor Orthorhombic YBa₂Cu₃O₇. 2. **Effect of the Capping-Oxygen Displacement on the** Interaction of the CuO₂ Layers with the CuO₃ Chains, the Fermi Surface Dimensionality of the CuO₃ Chain Band, **and the Valence Fluctuations of the Copper Atoms**

Sir:

Recently, a number of synthetic and structural studies¹⁻⁸ have been reported on the high-temperature superconductors with *T,* > 90 K, i.e., the Y-Ba-Cu-O system and its analogues. The recent powder neutron diffraction study of Beno et al.⁷ identified the superconducting Y-Ba-Cu-0 phase uniquely as orthorhombic $YBa₂Cu₃O_{7-y}$ ($y \approx 0.19$), which contains two-dimensional (2D) structural units of composition $Ba_2Cu_3O_{7-v}^{3-}$, i.e., two CuO_2 layers that sandwich one CuO, chain and two Ba2+ cations **per** unit cell (see Figure 1 of ref 9). Within every $Ba_2Cu_3O_{7-y}^{3-z}$ slab, each copper atom (Cu2 of the CuO₂ layers) is capped by the oxygen 04 (site fully occupied) of the *CuO,* chains in such a way that each copper atom (Cu1) of the CuO₃ chains forms a Cu2-O4-Cu1-O4-Cu2 bridge perpendicular to the $Ba_2Cu_3O_{7-y}^3$ slab. The Y^{3+} cations of $YBa_2Cu_3O_{7-y}$ are sandwiched by the $Ba_2Cu_3O_{7-y}^{3-}$ slabs which alternate with layers of Y^{3+} cations along the c axis.

- (1) Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. *Phys. Rev. Letf.* **1987,** *58, 908.*
- (2) Hinks, D. G.; Soderholm, L.; Capone, D. W., **11;** Jorgensen, J. D.; Schuller, I. K.; Segre, C. U.; Zhang, K.; Grace, J. D., submitted for publication in *Appl. Phys. Letf.*
- (3) Cava, R. J.; Batlogg, B.; van Dover, R. B.; Murphy, D. W.; Sunshine, *S.;* Siegrist, T.; Remeika, J. P.; Reitman, E. A,; Zahurak, S.; Espinosa,
- G. P. Phys. Rev. Lett. 1987, 58, 1676.

(4) Grant, P. M.; Beyers, R. B.; Engler, E. M.; Lim, G.; Parkin, S. P.;

Ramirez, M. L.; Lee, V. Y.; Nazzal, A.; Vazquez, J. E.; Savoy, R. J.

Phys. Rev. B: Condens. Matter, in press
- (5) Syono, Y.; Kikuchi, M.; Oh-ishi, K.; Hiraga, K.; Arai, H.; Matsui, Y.; Kobayashi, N.; Sasoka, T.; Motto, Y., unpublished results.
(6) Hazen, R. M.; Finger, L. W.; Angel, R. J.; Prewitt, C. T.; Ross, N. L.;
- Mao, H. K.; Hadidiacos, C. *G.;* Hor, P. H.; Meng, R. L.; Chu, C. W. *Phys. Rev. B: Condens. Matter,* in press.
- (7) Beno, M. A.; Soderholm, L.; Capone, D. W., II; Hinks, D. G.; Jorgensen, J. D.; Schuller, I. K.; Segre, C. U.; Zhang, K.; Grace, J. D., submitted for publication in Apl . Apl . $Phys$. Let.
(8) (a) Fisk, Z.; Thompson, J
- submitted for publication in Solid State Commun. (b) Porter, L. C.;
Thorn, R. L.; Geiser, U.; Umezawa, A.; Wang, H. H.; Kwok, W. K.;
Kao, H.-C. I.; Monaghan, M. R.; Crabtree, G. W.; Carlson, K. D.; Williams, J. M. *Inorg. Chem.* **1987,** *26,* 1645.
- (9) Whangbo, M.-H.; Evain, M.; Beno, M. **A,;** Williams, J. M. *Inorg. Chem.,* preceding paper in this issue.

⁽²³⁾ (a) Fisk, Z.; Thompson, J. **D.;** Zirngiebl, E.; Smith, J. L.; Cheong, S.-W., submitted for publication in *Solid State* Commun. (b) Porter, L. C.; Thorn, R. L.; Geiser, U.; Umezawa, A.; Wang, H. H.; Kwok, W.
K.; Kao, H.-C. I.; Monaghan, M. R.; Crabtree, G. W.; Carlson, K. D.; Williams, J. M. Inorg. Chem. 1987, 26, 1645. (c) Engler, E. M.; Lee, V. Y.; Nazzal, A S. P.; Ramirez, M. L.; Vazquez, J. E.; Savoy, R. J. J. *Am. Chem.* **SOC. 1987,** 109, 2848.